The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Given the products of diagonally opposite cells - can you complete this Sudoku?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

A game that tests your understanding of remainders.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Find the highest power of 11 that will divide into 1000! exactly.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

How many zeros are there at the end of the number which is the product of first hundred positive integers?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Can you find a way to identify times tables after they have been shifted up?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Can you work out what size grid you need to read our secret message?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Can you find any perfect numbers? Read this article to find out more...

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Substitution and Transposition all in one! How fiendish can these codes get?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?