Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A collection of resources to support work on Factors and Multiples at Secondary level.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you find a way to identify times tables after they have been shifted up?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you find any perfect numbers? Read this article to find out more...

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Substitution and Transposition all in one! How fiendish can these codes get?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you explain the strategy for winning this game with any target?

Explore the relationship between simple linear functions and their graphs.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Have you seen this way of doing multiplication ?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you work out what size grid you need to read our secret message?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Follow this recipe for sieving numbers and see what interesting patterns emerge.