Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you find any perfect numbers? Read this article to find out more...

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you find a way to identify times tables after they have been shifted up?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you find what the last two digits of the number $4^{1999}$ are?

Find the highest power of 11 that will divide into 1000! exactly.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Can you work out what size grid you need to read our secret message?

Substitution and Transposition all in one! How fiendish can these codes get?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .