Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Find the highest power of 11 that will divide into 1000! exactly.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A collection of resources to support work on Factors and Multiples at Secondary level.

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Can you work out what size grid you need to read our secret message?

Substitution and Transposition all in one! How fiendish can these codes get?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Can you find what the last two digits of the number $4^{1999}$ are?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The clues for this Sudoku are the product of the numbers in adjacent squares.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?