Search by Topic

Resources tagged with Factors and multiples similar to Ways of Summing Odd Numbers:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 93 results

Broad Topics > Numbers and the Number System > Factors and multiples

problem icon

Multiplication Equation Sudoku

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

problem icon

Product Sudoku

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

The clues for this Sudoku are the product of the numbers in adjacent squares.

problem icon

LCM Sudoku

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

problem icon

LCM Sudoku II

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

problem icon

Mathematical Swimmer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

problem icon

Product Sudoku 2

Stage: 3 and 4 Challenge Level: Challenge Level:1

Given the products of diagonally opposite cells - can you complete this Sudoku?

problem icon

Factorial

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

How many zeros are there at the end of the number which is the product of first hundred positive integers?

problem icon

Two Much

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

Multiplication Magic

Stage: 4 Challenge Level: Challenge Level:1

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

problem icon

N000ughty Thoughts

Stage: 4 Challenge Level: Challenge Level:1

How many noughts are at the end of these giant numbers?

problem icon

Can You Find a Perfect Number?

Stage: 2 and 3

Can you find any perfect numbers? Read this article to find out more...

problem icon

What a Joke

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

problem icon

Factoring a Million

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

problem icon

GOT IT Now

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Transposition Cipher

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you work out what size grid you need to read our secret message?

problem icon

Repeaters

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Phew I'm Factored

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

problem icon

AB Search

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

problem icon

Squaresearch

Stage: 4 Challenge Level: Challenge Level:1

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

problem icon

Adding All Nine

Stage: 3 Challenge Level: Challenge Level:1

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Hot Pursuit

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

problem icon

Times Right

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

problem icon

Eminit

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

problem icon

Big Powers

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

problem icon

Factor Lines

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

problem icon

Shopping Basket

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

problem icon

A First Product Sudoku

Stage: 3 Challenge Level: Challenge Level:1

Given the products of adjacent cells, can you complete this Sudoku?

problem icon

Napier's Location Arithmetic

Stage: 4 Challenge Level: Challenge Level:1

Have you seen this way of doing multiplication ?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Charlie's Delightful Machine

Stage: 3 and 4 Challenge Level: Challenge Level:1

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

problem icon

Factor Track

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

problem icon

Sieve of Eratosthenes

Stage: 3 Challenge Level: Challenge Level:1

Follow this recipe for sieving numbers and see what interesting patterns emerge.

problem icon

Gabriel's Problem

Stage: 3 and 4 Challenge Level: Challenge Level:1

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

problem icon

Substitution Transposed

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Substitution and Transposition all in one! How fiendish can these codes get?

problem icon

Exploring Simple Mappings

Stage: 3 Challenge Level: Challenge Level:1

Explore the relationship between simple linear functions and their graphs.

problem icon

Counting Cogs

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

problem icon

Ben's Game

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Different by One

Stage: 4 Challenge Level: Challenge Level:1

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

problem icon

Data Chunks

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

problem icon

The Remainders Game

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game that tests your understanding of remainders.

problem icon

Inclusion Exclusion

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

problem icon

Mod 3

Stage: 4 Challenge Level: Challenge Level:1

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

How Old Are the Children?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

problem icon

Power Crazy

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

problem icon

Divisively So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

problem icon

Gaxinta

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?