Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you find any perfect numbers? Read this article to find out more...

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Find the highest power of 11 that will divide into 1000! exactly.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you find what the last two digits of the number $4^{1999}$ are?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

A game that tests your understanding of remainders.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Is there an efficient way to work out how many factors a large number has?

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Explore the relationship between simple linear functions and their graphs.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you find a way to identify times tables after they have been shifted up?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .