For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

An environment which simulates working with Cuisenaire rods.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Given the products of adjacent cells, can you complete this Sudoku?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

If you have only four weights, where could you place them in order to balance this equaliser?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you find any perfect numbers? Read this article to find out more...

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you complete this jigsaw of the multiplication square?

Got It game for an adult and child. How can you play so that you know you will always win?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

An investigation that gives you the opportunity to make and justify predictions.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Are these statements always true, sometimes true or never true?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?