56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you find what the last two digits of the number $4^{1999}$ are?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

An investigation that gives you the opportunity to make and justify predictions.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find a way to identify times tables after they have been shifted up?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Can you find any perfect numbers? Read this article to find out more...

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Find the highest power of 11 that will divide into 1000! exactly.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...