I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

56 406 is the product of two consecutive numbers. What are these two numbers?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

How many different sets of numbers with at least four members can you find in the numbers in this box?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Can you find any perfect numbers? Read this article to find out more...

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Given the products of adjacent cells, can you complete this Sudoku?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Got It game for an adult and child. How can you play so that you know you will always win?

Have a go at balancing this equation. Can you find different ways of doing it?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Number problems at primary level that may require determination.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Number problems at primary level to work on with others.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

An investigation that gives you the opportunity to make and justify predictions.