I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Can you find any perfect numbers? Read this article to find out more...

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many different sets of numbers with at least four members can you find in the numbers in this box?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

56 406 is the product of two consecutive numbers. What are these two numbers?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Are these statements always true, sometimes true or never true?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Got It game for an adult and child. How can you play so that you know you will always win?

Have a go at balancing this equation. Can you find different ways of doing it?

Number problems at primary level that may require determination.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Number problems at primary level to work on with others.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

An investigation that gives you the opportunity to make and justify predictions.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?