Find the frequency distribution for ordinary English, and use it to help you crack the code.

Substitution and Transposition all in one! How fiendish can these codes get?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Can you complete this jigsaw of the multiplication square?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you work out what size grid you need to read our secret message?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Got It game for an adult and child. How can you play so that you know you will always win?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A collection of resources to support work on Factors and Multiples at Secondary level.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivities to complete these Venn diagrams.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A game that tests your understanding of remainders.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

An environment which simulates working with Cuisenaire rods.

56 406 is the product of two consecutive numbers. What are these two numbers?