Find the frequency distribution for ordinary English, and use it to help you crack the code.

Substitution and Transposition all in one! How fiendish can these codes get?

If you have only four weights, where could you place them in order to balance this equaliser?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

A collection of resources to support work on Factors and Multiples at Secondary level.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A game that tests your understanding of remainders.

Use the interactivities to complete these Venn diagrams.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Can you complete this jigsaw of the multiplication square?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Got It game for an adult and child. How can you play so that you know you will always win?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you work out what size grid you need to read our secret message?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

An environment which simulates working with Cuisenaire rods.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Find the highest power of 11 that will divide into 1000! exactly.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?