Find the frequency distribution for ordinary English, and use it to help you crack the code.

Substitution and Transposition all in one! How fiendish can these codes get?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you find a way to identify times tables after they have been shifted up?

A game that tests your understanding of remainders.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you work out what size grid you need to read our secret message?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A game in which players take it in turns to choose a number. Can you block your opponent?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Find the highest power of 11 that will divide into 1000! exactly.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

If you have only four weights, where could you place them in order to balance this equaliser?

Number problems at primary level to work on with others.

Number problems at primary level that may require determination.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you find any perfect numbers? Read this article to find out more...

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?