These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Are these statements always true, sometimes true or never true?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find any perfect numbers? Read this article to find out more...

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Can you find what the last two digits of the number $4^{1999}$ are?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Find the highest power of 11 that will divide into 1000! exactly.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Given the products of adjacent cells, can you complete this Sudoku?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Can you complete this jigsaw of the multiplication square?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Got It game for an adult and child. How can you play so that you know you will always win?

Have a go at balancing this equation. Can you find different ways of doing it?