Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

How many different sets of numbers with at least four members can you find in the numbers in this box?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you make square numbers by adding two prime numbers together?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Can you find a way to identify times tables after they have been shifted up?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find any perfect numbers? Read this article to find out more...

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

An investigation that gives you the opportunity to make and justify predictions.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

An environment which simulates working with Cuisenaire rods.

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A game in which players take it in turns to choose a number. Can you block your opponent?

If you have only four weights, where could you place them in order to balance this equaliser?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find the highest power of 11 that will divide into 1000! exactly.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...