For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you complete this jigsaw of the multiplication square?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Got It game for an adult and child. How can you play so that you know you will always win?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

If you have only four weights, where could you place them in order to balance this equaliser?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Given the products of adjacent cells, can you complete this Sudoku?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

An investigation that gives you the opportunity to make and justify predictions.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

56 406 is the product of two consecutive numbers. What are these two numbers?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

An environment which simulates working with Cuisenaire rods.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?