A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the highest power of 11 that will divide into 1000! exactly.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Is there an efficient way to work out how many factors a large number has?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you find any perfect numbers? Read this article to find out more...

Can you find what the last two digits of the number $4^{1999}$ are?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

A game that tests your understanding of remainders.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you find a way to identify times tables after they have been shifted up?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Given the products of adjacent cells, can you complete this Sudoku?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Number problems at primary level to work on with others.