The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Can you work out what size grid you need to read our secret message?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Can you find what the last two digits of the number $4^{1999}$ are?

Find the highest power of 11 that will divide into 1000! exactly.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Given the products of diagonally opposite cells - can you complete this Sudoku?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Number problems at primary level to work on with others.

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Number problems at primary level that may require determination.

Can you find any perfect numbers? Read this article to find out more...

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Given the products of adjacent cells, can you complete this Sudoku?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.