Given the products of diagonally opposite cells - can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Given the products of adjacent cells, can you complete this Sudoku?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A collection of resources to support work on Factors and Multiples at Secondary level.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A game that tests your understanding of remainders.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Got It game for an adult and child. How can you play so that you know you will always win?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Is there an efficient way to work out how many factors a large number has?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you complete this jigsaw of the multiplication square?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you work out what size grid you need to read our secret message?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

If you have only four weights, where could you place them in order to balance this equaliser?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Find the highest power of 11 that will divide into 1000! exactly.

Can you find any perfect numbers? Read this article to find out more...

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?