Given the products of diagonally opposite cells - can you complete this Sudoku?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A game that tests your understanding of remainders.

A collection of resources to support work on Factors and Multiples at Secondary level.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Got It game for an adult and child. How can you play so that you know you will always win?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you complete this jigsaw of the multiplication square?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

If you have only four weights, where could you place them in order to balance this equaliser?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Find the highest power of 11 that will divide into 1000! exactly.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?