Can you complete this jigsaw of the multiplication square?

Use the interactivities to complete these Venn diagrams.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Given the products of diagonally opposite cells - can you complete this Sudoku?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Given the products of adjacent cells, can you complete this Sudoku?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Can you explain the strategy for winning this game with any target?

56 406 is the product of two consecutive numbers. What are these two numbers?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you work out some different ways to balance this equation?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Got It game for an adult and child. How can you play so that you know you will always win?

Explore the relationship between simple linear functions and their graphs.

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?