Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game in which players take it in turns to choose a number. Can you block your opponent?

Use the interactivities to complete these Venn diagrams.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

A game that tests your understanding of remainders.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

If you have only four weights, where could you place them in order to balance this equaliser?

Can you complete this jigsaw of the multiplication square?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

A challenge that requires you to apply your knowledge of the properties of numbers. Can you fill all the squares on the board?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Given the products of diagonally opposite cells - can you complete this Sudoku?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

An environment which simulates working with Cuisenaire rods.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Given the products of adjacent cells, can you complete this Sudoku?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?