I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Are these statements always true, sometimes true or never true?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

56 406 is the product of two consecutive numbers. What are these two numbers?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find any perfect numbers? Read this article to find out more...

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Can you find what the last two digits of the number $4^{1999}$ are?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Given the products of adjacent cells, can you complete this Sudoku?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

An investigation that gives you the opportunity to make and justify predictions.

Follow this recipe for sieving numbers and see what interesting patterns emerge.