Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Given the products of adjacent cells, can you complete this Sudoku?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you find what the last two digits of the number $4^{1999}$ are?

Find the highest power of 11 that will divide into 1000! exactly.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you find any perfect numbers? Read this article to find out more...

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Is there an efficient way to work out how many factors a large number has?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Are these statements always true, sometimes true or never true?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.