In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you complete this jigsaw of the multiplication square?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

If you have only four weights, where could you place them in order to balance this equaliser?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Use the interactivities to complete these Venn diagrams.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A game that tests your understanding of remainders.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Given the products of adjacent cells, can you complete this Sudoku?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Got It game for an adult and child. How can you play so that you know you will always win?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

An environment which simulates working with Cuisenaire rods.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?