The clues for this Sudoku are the product of the numbers in adjacent squares.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Given the products of adjacent cells, can you complete this Sudoku?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you find a way to identify times tables after they have been shifted up?

A game that tests your understanding of remainders.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Find the highest power of 11 that will divide into 1000! exactly.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

An investigation that gives you the opportunity to make and justify predictions.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you find any perfect numbers? Read this article to find out more...