This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

56 406 is the product of two consecutive numbers. What are these two numbers?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you find what the last two digits of the number $4^{1999}$ are?

Got It game for an adult and child. How can you play so that you know you will always win?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Have a go at balancing this equation. Can you find different ways of doing it?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you work out some different ways to balance this equation?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

If you have only four weights, where could you place them in order to balance this equaliser?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you find a way to identify times tables after they have been shifted up?

A game that tests your understanding of remainders.

An investigation that gives you the opportunity to make and justify predictions.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?