Can you complete this jigsaw of the multiplication square?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game that tests your understanding of remainders.

Use the interactivities to complete these Venn diagrams.

If you have only four weights, where could you place them in order to balance this equaliser?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Given the products of adjacent cells, can you complete this Sudoku?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you find a way to identify times tables after they have been shifted up?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Have a go at balancing this equation. Can you find different ways of doing it?