Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

56 406 is the product of two consecutive numbers. What are these two numbers?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Got It game for an adult and child. How can you play so that you know you will always win?

Number problems at primary level that may require determination.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Are these statements always true, sometimes true or never true?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Number problems at primary level to work on with others.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you work out some different ways to balance this equation?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Find the number which has 8 divisors, such that the product of the divisors is 331776.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?