Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you find what the last two digits of the number $4^{1999}$ are?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you find any perfect numbers? Read this article to find out more...

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Got It game for an adult and child. How can you play so that you know you will always win?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

An investigation that gives you the opportunity to make and justify predictions.

Given the products of adjacent cells, can you complete this Sudoku?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A game that tests your understanding of remainders.