Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Got It game for an adult and child. How can you play so that you know you will always win?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you find any perfect numbers? Read this article to find out more...

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Find the highest power of 11 that will divide into 1000! exactly.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you find a way to identify times tables after they have been shifted up?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

If you have only four weights, where could you place them in order to balance this equaliser?

An investigation that gives you the opportunity to make and justify predictions.

A game that tests your understanding of remainders.