This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

56 406 is the product of two consecutive numbers. What are these two numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Got It game for an adult and child. How can you play so that you know you will always win?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you find what the last two digits of the number $4^{1999}$ are?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you find any perfect numbers? Read this article to find out more...

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Find the highest power of 11 that will divide into 1000! exactly.

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Given the products of adjacent cells, can you complete this Sudoku?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Have a go at balancing this equation. Can you find different ways of doing it?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Can you work out some different ways to balance this equation?