Search by Topic

Resources tagged with Factors and multiples similar to Digital Roots:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 138 results

Broad Topics > Numbers and the Number System > Factors and multiples

problem icon

Gaxinta

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

problem icon

Remainders

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

problem icon

Ewa's Eggs

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

problem icon

Digat

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

problem icon

AB Search

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

problem icon

Factoring Factorials

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the highest power of 11 that will divide into 1000! exactly.

problem icon

Powerful Factorial

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

problem icon

Oh! Hidden Inside?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find the number which has 8 divisors, such that the product of the divisors is 331776.

problem icon

Eminit

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

problem icon

Divisively So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

problem icon

One to Eight

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

problem icon

Times Right

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

problem icon

Divisibility Tests

Stage: 3, 4 and 5

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

problem icon

Sieve of Eratosthenes

Stage: 3 Challenge Level: Challenge Level:1

Follow this recipe for sieving numbers and see what interesting patterns emerge.

problem icon

Thirty Six Exactly

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The number 12 = 2^2 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

problem icon

Can You Find a Perfect Number?

Stage: 2 and 3

Can you find any perfect numbers? Read this article to find out more...

problem icon

Inclusion Exclusion

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

problem icon

Remainder

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

problem icon

Hot Pursuit

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Repeaters

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Counting Cogs

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

Diggits

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you find what the last two digits of the number $4^{1999}$ are?

problem icon

Shifting Times Tables

Stage: 3 Challenge Level: Challenge Level:1

Can you find a way to identify times tables after they have been shifted up?

problem icon

Missing Multipliers

Stage: 3 Challenge Level: Challenge Level:1

What is the smallest number of answers you need to reveal in order to work out the missing headers?

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Big Powers

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Multiply Multiples 3

Stage: 2 Challenge Level: Challenge Level:1

Have a go at balancing this equation. Can you find different ways of doing it?

problem icon

What Do You Need?

Stage: 2 Challenge Level: Challenge Level:1

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

problem icon

Two Much

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

problem icon

X Marks the Spot

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Multiply Multiples 2

Stage: 2 Challenge Level: Challenge Level:1

Can you work out some different ways to balance this equation?

problem icon

Reverse to Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

GOT IT Now

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Helen's Conjecture

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

problem icon

Product Sudoku

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

The clues for this Sudoku are the product of the numbers in adjacent squares.

problem icon

Multiply Multiples 1

Stage: 2 Challenge Level: Challenge Level:1

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

problem icon

The Remainders Game

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game that tests your understanding of remainders.

problem icon

Mathematical Swimmer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths. . . .

problem icon

Scoring with Dice

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

problem icon

LCM Sudoku II

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

problem icon

Exploring Simple Mappings

Stage: 3 Challenge Level: Challenge Level:1

Explore the relationship between simple linear functions and their graphs.

problem icon

Becky's Number Plumber

Stage: 2 Challenge Level: Challenge Level:1

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

problem icon

Divide it Out

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

problem icon

Factor-multiple Chains

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

problem icon

Gran, How Old Are You?

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?