Given the products of diagonally opposite cells - can you complete this Sudoku?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The clues for this Sudoku are the product of the numbers in adjacent squares.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you complete this jigsaw of the multiplication square?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you work out what size grid you need to read our secret message?

A game that tests your understanding of remainders.

If you have only four weights, where could you place them in order to balance this equaliser?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Given the products of adjacent cells, can you complete this Sudoku?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Can you find what the last two digits of the number $4^{1999}$ are?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Are these statements always true, sometimes true or never true?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?