How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

A game that tests your understanding of remainders.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Is there an efficient way to work out how many factors a large number has?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Can you find what the last two digits of the number $4^{1999}$ are?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .