Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

56 406 is the product of two consecutive numbers. What are these two numbers?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

How many different sets of numbers with at least four members can you find in the numbers in this box?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you complete this jigsaw of the multiplication square?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you find any perfect numbers? Read this article to find out more...

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Can you find what the last two digits of the number $4^{1999}$ are?

An investigation that gives you the opportunity to make and justify predictions.

Got It game for an adult and child. How can you play so that you know you will always win?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Have a go at balancing this equation. Can you find different ways of doing it?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Can you work out some different ways to balance this equation?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Explore the relationship between simple linear functions and their graphs.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?