Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Number problems at primary level that may require determination.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Are these statements always true, sometimes true or never true?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this jigsaw of the multiplication square?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Got It game for an adult and child. How can you play so that you know you will always win?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Number problems at primary level to work on with others.

An investigation that gives you the opportunity to make and justify predictions.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Explore the relationship between simple linear functions and their graphs.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

56 406 is the product of two consecutive numbers. What are these two numbers?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The clues for this Sudoku are the product of the numbers in adjacent squares.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Can you find what the last two digits of the number $4^{1999}$ are?

If you have only four weights, where could you place them in order to balance this equaliser?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.