Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you find any perfect numbers? Read this article to find out more...

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

An investigation that gives you the opportunity to make and justify predictions.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Are these statements always true, sometimes true or never true?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Find the highest power of 11 that will divide into 1000! exactly.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?