Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you find any perfect numbers? Read this article to find out more...

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Got It game for an adult and child. How can you play so that you know you will always win?

Are these statements always true, sometimes true or never true?

Can you find a way to identify times tables after they have been shifted up?

An investigation that gives you the opportunity to make and justify predictions.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Number problems at primary level that may require determination.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

An environment which simulates working with Cuisenaire rods.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Number problems at primary level to work on with others.

Use the interactivities to complete these Venn diagrams.

A game that tests your understanding of remainders.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

If you have only four weights, where could you place them in order to balance this equaliser?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Find the highest power of 11 that will divide into 1000! exactly.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Can you find what the last two digits of the number $4^{1999}$ are?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?