An investigation that gives you the opportunity to make and justify predictions.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Can you find any perfect numbers? Read this article to find out more...

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

56 406 is the product of two consecutive numbers. What are these two numbers?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you find what the last two digits of the number $4^{1999}$ are?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Got It game for an adult and child. How can you play so that you know you will always win?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Can you complete this jigsaw of the multiplication square?

Given the products of adjacent cells, can you complete this Sudoku?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Have a go at balancing this equation. Can you find different ways of doing it?