A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Got It game for an adult and child. How can you play so that you know you will always win?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you complete this jigsaw of the multiplication square?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

If you have only four weights, where could you place them in order to balance this equaliser?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?