A game in which players take it in turns to choose a number. Can you block your opponent?

A game that tests your understanding of remainders.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the frequency distribution for ordinary English, and use it to help you crack the code.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you complete this jigsaw of the multiplication square?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Given the products of adjacent cells, can you complete this Sudoku?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

If you have only four weights, where could you place them in order to balance this equaliser?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Use the interactivities to complete these Venn diagrams.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Got It game for an adult and child. How can you play so that you know you will always win?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

An environment which simulates working with Cuisenaire rods.

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you find a way to identify times tables after they have been shifted up?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?