How many different sets of numbers with at least four members can you find in the numbers in this box?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Number problems at primary level that may require determination.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Number problems at primary level to work on with others.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

An investigation that gives you the opportunity to make and justify predictions.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Got It game for an adult and child. How can you play so that you know you will always win?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Can you make square numbers by adding two prime numbers together?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

56 406 is the product of two consecutive numbers. What are these two numbers?

An environment which simulates working with Cuisenaire rods.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!