Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

56 406 is the product of two consecutive numbers. What are these two numbers?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you complete this jigsaw of the multiplication square?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Use the interactivities to complete these Venn diagrams.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Have a go at balancing this equation. Can you find different ways of doing it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Number problems at primary level that may require determination.

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Are these statements always true, sometimes true or never true?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you work out some different ways to balance this equation?

Got It game for an adult and child. How can you play so that you know you will always win?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Number problems at primary level to work on with others.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Explore the relationship between simple linear functions and their graphs.