What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Got It game for an adult and child. How can you play so that you know you will always win?

56 406 is the product of two consecutive numbers. What are these two numbers?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you complete this jigsaw of the multiplication square?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Number problems at primary level that may require determination.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Number problems at primary level to work on with others.

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivities to complete these Venn diagrams.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A game that tests your understanding of remainders.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?