The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you make square numbers by adding two prime numbers together?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

An investigation that gives you the opportunity to make and justify predictions.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

56 406 is the product of two consecutive numbers. What are these two numbers?

How many different sets of numbers with at least four members can you find in the numbers in this box?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

An environment which simulates working with Cuisenaire rods.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Got It game for an adult and child. How can you play so that you know you will always win?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you find what the last two digits of the number $4^{1999}$ are?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Can you complete this jigsaw of the multiplication square?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Given the products of adjacent cells, can you complete this Sudoku?