Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

56 406 is the product of two consecutive numbers. What are these two numbers?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

A game that tests your understanding of remainders.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

A game in which players take it in turns to choose a number. Can you block your opponent?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Got It game for an adult and child. How can you play so that you know you will always win?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Given the products of adjacent cells, can you complete this Sudoku?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Can you find what the last two digits of the number $4^{1999}$ are?