Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

56 406 is the product of two consecutive numbers. What are these two numbers?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

An investigation that gives you the opportunity to make and justify predictions.

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

An environment which simulates working with Cuisenaire rods.

Got It game for an adult and child. How can you play so that you know you will always win?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Have a go at balancing this equation. Can you find different ways of doing it?

Given the products of adjacent cells, can you complete this Sudoku?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?