On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

56 406 is the product of two consecutive numbers. What are these two numbers?

Number problems at primary level that may require determination.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Number problems at primary level to work on with others.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Can you make square numbers by adding two prime numbers together?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Got It game for an adult and child. How can you play so that you know you will always win?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

If you have only four weights, where could you place them in order to balance this equaliser?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Are these statements always true, sometimes true or never true?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Can you complete this jigsaw of the multiplication square?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Given the products of adjacent cells, can you complete this Sudoku?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.