Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

56 406 is the product of two consecutive numbers. What are these two numbers?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Got It game for an adult and child. How can you play so that you know you will always win?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

If you have only four weights, where could you place them in order to balance this equaliser?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Can you make square numbers by adding two prime numbers together?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Can you find what the last two digits of the number $4^{1999}$ are?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?