Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Can you complete this jigsaw of the multiplication square?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

This package will help introduce children to, and encourage a deep exploration of, multiples.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you find the chosen number from the grid using the clues?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Number problems at primary level that may require determination.

Number problems at primary level to work on with others.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

56 406 is the product of two consecutive numbers. What are these two numbers?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

If you have only four weights, where could you place them in order to balance this equaliser?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

An investigation that gives you the opportunity to make and justify predictions.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Can you find any perfect numbers? Read this article to find out more...

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?