56 406 is the product of two consecutive numbers. What are these two numbers?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

An investigation that gives you the opportunity to make and justify predictions.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you complete this jigsaw of the multiplication square?

Got It game for an adult and child. How can you play so that you know you will always win?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you find the chosen number from the grid using the clues?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Can you find any perfect numbers? Read this article to find out more...

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

If you have only four weights, where could you place them in order to balance this equaliser?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?