What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

56 406 is the product of two consecutive numbers. What are these two numbers?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Can you find any perfect numbers? Read this article to find out more...

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Can you find the chosen number from the grid using the clues?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

This package will help introduce children to, and encourage a deep exploration of, multiples.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Can you complete this jigsaw of the multiplication square?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Got It game for an adult and child. How can you play so that you know you will always win?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?