Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Got It game for an adult and child. How can you play so that you know you will always win?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This package will help introduce children to, and encourage a deep exploration of, multiples.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you find the chosen number from the grid using the clues?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

How many trains can you make which are the same length as Matt's, using rods that are identical?

An investigation that gives you the opportunity to make and justify predictions.

Are these statements always true, sometimes true or never true?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

56 406 is the product of two consecutive numbers. What are these two numbers?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Number problems at primary level that may require determination.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?