Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Got It game for an adult and child. How can you play so that you know you will always win?

This package will help introduce children to, and encourage a deep exploration of, multiples.

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Can you find the chosen number from the grid using the clues?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

An environment which simulates working with Cuisenaire rods.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

An investigation that gives you the opportunity to make and justify predictions.

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?