Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Number problems at primary level to work on with others.

Number problems at primary level that may require determination.

This package will help introduce children to, and encourage a deep exploration of, multiples.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you find the chosen number from the grid using the clues?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you complete this jigsaw of the multiplication square?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

Are these statements always true, sometimes true or never true?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

56 406 is the product of two consecutive numbers. What are these two numbers?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?