Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

56 406 is the product of two consecutive numbers. What are these two numbers?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

This article for teachers describes how number arrays can be a useful reprentation for many number concepts.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you find the chosen number from the grid using the clues?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Use the interactivity to sort these numbers into sets. Can you give each set a name?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Got It game for an adult and child. How can you play so that you know you will always win?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?